Ergodic Theory and Measured Group Theory
Lecture 25

Ekcoples (cantinnell).
(d) The transtition atien $\mathbb{Q} \rightarrow \mathbb{R}$ is ecgodic w.c.t. the Lebergee menruce, henee the orbit eq. cel., known as the Vitali eq. rel., henoted E_{v}, is wonsuooth.

Note tht imothuen is doed downuered waber Bovel ceductions, i.e. if $F G$ a smooth ey. cel. al $E \leq_{B} F$, then E too is sumooth. Tlus, if, say $\mathbb{E}_{0} \leq_{B} E$ then E is nonsmosth.
$\frac{\mathbb{E}_{0} \text {-didnotingy (Harrington-Kechris-lonvecu). For an Bart es. nel } E \text {. } \text { either } E \text { is suooth }}{\text {. }}$. or $\mathbb{E}_{0} \underline{\underline{E}}_{B} E$.

This genealized curlier theorems (in tuactional ancly sis) of Glimm an EfFios, so poople stitl reter to his as the ClimaEffros dichatony.

Gocollary. If a Boul eq. nel. Ehas a measucable reccuction to
the ideatity, then it has a Borel cecluction (ier. is smooth). Proit. We prove the rectrapositive: if E is movesnath, then $\mathbb{E}_{0} \frac{E_{B} E}{}$ wance E cannot have a measurable rechection to the idectity hemse \mathbb{E}. doessid have it.
N-cheracteriction of smoothum. A CBER E on a it. Berel X is smooth \Leftrightarrow B Boal $X=\sum_{n=0}^{\infty} X_{n}$ i.t. ench X_{n} mects every $E-c / m$ at most once (i.1. is a partial transversal of E) anal tor cach $\left.E-d a n c, \quad 4 u \in \mathbb{N}: C \cap X_{n} \neq \phi\right\}$ is in initial segeect of \mathbb{N}, i.e. an interval $[0, n] \cap \mathbb{N}$ or \mathbb{N}.

Rood. \Rightarrow Fio a Bonel transversal X_{0} tor E. Fix Benel involations $\left(\gamma_{n}\right)$ if X s.t. $E=V_{n} \operatorname{graph}\left(\gamma_{n}\right)$. Sappose X_{0}, \ldots, x_{n} are detined, and detive
$X_{n+1}:=\left\{\gamma_{k} \cdot x: x \in X_{0}\right.$ and k is the least s.t. $\left.\gamma_{k} \cdot x \notin X_{0} \cup x, V \ldots \cup x_{n}\right\}$.

Corollary. A pap CBER E is smooth al. $\Leftrightarrow E$ is finite ace. lie. call E-clans is timite after throwing out a mall oct).
Proof. \Leftrightarrow, This holds without pip al u e did his last tine.
\Rightarrow Let $Y:=\left\{x \in X:\{x\}_{E}\right.$ is infinite $\}$. We all Y the aperiodic part of E. Let $Y=\prod_{n=0}^{\infty} x_{n}$ be as in the previous characterization. Then ${ }^{n=0}$ each X_{n} is a transversa al \exists Bone bijection $\varphi_{n}: X_{0} \rightarrow X_{n}$ with $\varphi_{n} \times E x \quad \forall x \in X_{0}$. Tuns, X_{n} las equal weasive to X_{0} al since \exists intingtely-undiy disjacid X_{a}, X_{0} mast be mall. This implies tut Y is call. (mink of $\mathbb{Z}^{\bigcirc} \mathbb{R}$ by transition $d X_{0}:=[0,1)$.)

Lt's learn how to couphate cost of graphing easier. locally th b|
 space (x, y) of suppose that \vec{G} is pup (ie. the concetedion relation, ignoring directions, is pap).

$$
\int_{x} \operatorname{an} t \log _{\vec{a}}(x) d{ }^{\mu}(k)=\int_{x} \operatorname{in} \operatorname{deg}_{\vec{a}}(k) d{ }^{\mu}(x)
$$

Note. This is true for finite staples, replacing \int_{X} with \sum_{X}.

Pcoot. Let $\left(\gamma_{n}\right)$ be Bmel insolutions s.t. $E=\bigcup_{n}$ graph $\left(\gamma_{n}\right)$ unt $\operatorname{qraph}\left(\gamma_{-}\right) \cap \operatorname{sraph}\left(\gamma_{m}\right) \subseteq I d_{x}$. Than outdey $\vec{a}_{a}(x)=$ $\sum_{n \in \mathbb{N}} \mathbb{1}_{\vec{a}}\left(x, \gamma_{n} x\right)$, hence

$$
\begin{aligned}
& \int \text { outle }_{\vec{G}}(x) d \mu(x)=\int \sum_{n \in \mathbb{N}} \mathbb{1}_{\vec{a}}\left(x, \gamma_{n} x\right) d r(x) \\
& \text { [Fubini] } \quad \sum_{n \in \mathbb{N}} \int \mathbb{1}_{\vec{c}}\left(x, \gamma_{n} x\right) d \mu(x) \\
& \begin{array}{l}
x \mapsto \gamma_{n} x \\
\text { [akange of varicble } \\
\text { benge of par] }
\end{array}=\sum_{n \in \mathbb{N}} \int \mathbb{1}_{\vec{G}}\left(\gamma_{n} \cdot x, \gamma_{n} \cdot \gamma_{n} \cdot x\right) d \mu(x) \\
& \text { [Fabini] }=\int \sum_{n \in \mathbb{N}} \mathbb{1}_{\overrightarrow{\mathrm{C}}}\left(\gamma_{n} x, x\right) d \mu^{\mu}(x) \\
& =\int \operatorname{indly}_{e_{C}}(x) d \mu(x) \text {. }
\end{aligned}
$$

Poof. For ang loually thbl pup Bonel sraph G

$$
\begin{aligned}
& \operatorname{Costy}_{\text {i }}(G)=\int_{x} \text { indey }_{\vec{u}}(x) d y^{\prime}(x)=\int_{x} \operatorname{artdy}(x) d y(x), \\
& \frac{1}{2} \int_{x} \operatorname{deg}_{\vec{a}}(x) d J(x) \text { tor any Borel directing } \vec{G} \text { of } G .
\end{aligned}
$$

A dieting of G is any graph \vec{a},.t. $\forall(x, y) \in h$, exactly one of $(x, y),(y, x)$ is in \vec{G}.
Eng. suppose $X=\mathbb{R}$ with its national liner orccle, ant for sinh pair x, y, pick the increasing edge $\left(z_{0}, z_{1}\right) \quad z_{0}<z_{1},\left\{z_{0}, z_{1}\right\}=\{x, s\}$.

Proof.

$$
\begin{aligned}
& \frac{1}{2} \int_{x} \operatorname{deg}_{\varphi}(x) d \mu^{\mu}(x)=\frac{1}{2} \int\left(\operatorname{indeg}_{\vec{u}}(x)+\operatorname{outh}_{\operatorname{deg}}^{\vec{u}}(x)\right) d J^{\mu}(x) \\
& =\frac{1}{2} \iint \operatorname{indeg}_{\bar{a}}\left(f d f(x)+\int \operatorname{oactag}_{a}(x d f(x)\right. \\
& =\frac{1}{\lambda} \cdot \chi \int i \cdot \lg _{\vec{a}}(x) d f(x) \text {. }
\end{aligned}
$$

Tho orem (Levitt). If E is smooth, awl pap then any treeing of E achieves the cost, which is equal to 1- $\mu(Y)$, ,here is any Bel transversal. In particular, if each E - (lan has 4 eleanor, then $\operatorname{cost}_{y}(E)=1-\frac{1}{n}$.
Proof. Let G be any graphing of E al let Y be amy transversal. Using a Felduran-Maore edge coloring,

we can talk ubict lexicographically least shortest paths between point in a Boer fastion. For each $x \in X$, pick the list edge is the lex-least pith from x to the uniige $y \in Y \cap[x]_{E}$.
This giver a truing $H \leq G$ of E. Hence $\operatorname{Cos} t_{f}(H) \leq \operatorname{Cos} t(G)$. This it is ecwigh to prove hat $\operatorname{lost}($ any teeny $)=1^{\prime \prime}(y)$. Let \vec{H} be a dieccting of H by direction he edges toward Y. This make outdey $(x)=1$ for each $x \in X) Y$, A out dey $(y)=0 \quad \forall y \in Y$. Then

$$
\begin{aligned}
\operatorname{cost}_{\mu}(H) & =\int_{X} \operatorname{outdy}_{\vec{H}}(x) d \mu(x) \\
& =\int_{X Y Y} 1 d \mu(x)=\mu(X \backslash Y)=1-\mu(Y) .
\end{aligned}
$$

